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NOM~N~LA~ 

A,,. coefficient in temperature field representation 

(2) ; 
a, wave number ; 

4j.3 eoeffrcient in velocity field representation (3): 

Dijm coefficient in velocity field representation (3); 
dr, volume element; 

&!&,“” 
unit vectors; 
f&trial function; 

J,(r), n-th order Bessel function of first kind ; 
K, number of z-trial functions; 
L, number of r-trial functions; 
M. number of +-trial functions; 
Ra, Rayleigh number ; 
I& dimensionless perturbation in velocity field: 
K cylindrical domain : 
w, vertical component of dimensionless velocity: 
X, z-trial function : 
Y, r-trial function. 

Greek symbols 

a,, parameter in radial part of temperature trial 
function ; 

Y. aspect ratio (radix-to-depth ratio); 
s, “contained in”; 
0, dimensionless perturbation in temperature 

field ; 
1, inverse of square root of Rayleigh number ; 
4 

:,, 
eigenvalue in (7); 
azimuthal coordinate. 

Special symbols 
TJi, linear vector space. 

Superscripts 
+ transpose; 

derivative with respect to argument of function. 

1. INTRODUCTION 
IN AN earlier paper [l], the onset of axisymmetric convection 
in a cylindrical fluid layer heated from beneath was investi- 

gated for aspect ratios (radius-to-height ratios) from 10 to 
8.0 and for selected larger aspect ratios. This communication 
extends that analysis to include the possibility of non- 
axisymmetric flows and hence completes the linear stability 
analysis of the system In the interest of brevity the reader is 
referred to [1] for any pertinent nomenclature which is 
omitted here. 

2. MA~MA~C~ DE~LOPME~ 

It was shown in [l] that the mathematical characterization 
of the marginal stability state can be recast as a variational 
problem having the form 

I = maximum 
2.fB(e,.u)du 

(U,o)EU) ~[VII :(Vu)+ + V@.Vtl]dv (1) 
L’ 

Is is a linear vector space of couples (I(. tl), each containing 
a solenoidal vector velocity field and an associated scalar 
temperature field, and each satisfying certain boundary 
constraints described in detail in[l], 

In applying the Rayleigh-Ritz technique in the present 
case one can generalize the axisymmetrie representations 
for u and 0 used in [ 1) in the following manner: 

The functions Gij, Wij,,, and l$, are chosen to have the form : 

@ij,(r, 4, 2) E C,(4) J,(a,r) sin (inz); 

W&r, 4, Z) zs G,(4) [r-l q”(r) Xgz) e, - r-l Y&(r) 

X&Q %I ; 

vi&, 4,~) = G,(4) [ - (4 - 1) yjk) KWe, 
+ nr-‘Yj,(r) Xdz) e,], 
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(4) 

(5) 

(6) 
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Here yj,(r) are the eigenfunctions of the following eigen- 

value problem : 

L d2 

G + l d - @$)JZ h-‘?“(r)] =<aj” y,.(r): (7) 
r dr 
q.(r) = Y;.(r) = 0, r = 0 and 1. (8) 

The functions Xiz) are defined as in [l] and 

(9) 

Finally, the a’s are roots of either 

J,(a) = 0 (conducting lateral wall) (10) 

or 

aJ, _ i(a) - nJ,(a) = 0 (insulating lateral wall). (11) 

It is noteworthy that each Wij. and each yjm represents a 
solenoidal vector field and hence after Davis [2] could be 
referred to as a finite roll. The value of the index n charac- 

terizes the number of zero planes to be found in a rotation 

of + through 360”: for example, the axisymmetric repre- 

sentations of [l] correspond to n : 0. 

Substitution of these representations into (1) and applica- 

tion of the necessary conditions for a maximum lead to an 

algebraic eigenvalue problem for determining 1 and the 

constants A, Bib and D, to within a multiplicative factor. 

A lower bound analysis identical in format to that 

performed in [l] can also be performed. In the case of non- 

axisymmetric flow states the counterpart of equation (39) 

of [l] is 

w = C G,(4) J,(ayr) F’(z) (12) 

in which F(z) is defined as in [l]. Here the permissible values 

of the parameter “a” are the roots of the transcendental 

equation 

aYJ,+ l@Y) + nJ,(ar) = 0. (13) 

The corresponding locus of lower bounds for a fixed value 

of n, i.e. azimuthal flow state, is not displayed here in Figs. 

(l)-(3) but Fig. 7 of [l] displays the characteristic behavior 

in all cases. The lower bound becomes increasingly sharp 
as the aspect ratio increases as expected smce the lower 

bound is obtained by allowing slip on the lateral wall and 

represents an exact solution in the limit of infinite aspect 

ratio. Conversely, the lower bound is not extremely sharp 

for small aspect ratios. In the latter case a sharper lower 
bound can be obtained by satisfying the no-slip condition 
on the lateral wall but allowing slip on the top and bottom. 

The exact analysis of this case is available in the literature 

[3-6] and hence provides a convenient lower bound for 

small aspect ratios. The validity of such a lower bound can 
be established by obvious modifications of Sec. 5 in [ 11. Such 

a combination of lower bounds has been formally applied 

by Catton and Edwards [ 111 to characterize the marginal 
stability state of the present system. 

3. RESULTS AND DISCUSSION 

The stability curves for axisymmetric and selected non- 

axisymmetric flow states are displayed in Fig. 1 for aspect 

ratios less than unity. It is noteworthy that there exists a 

transition in the marginal dynamic state from an axisym- 

metric state to an antisymmetric n = I state as the aspect 

ratio decreases. The transition point depends on the 

thermal condition imposed on the lateral wall. being 

approximately y = 0.81 for an insulating lateral wall and 

7 = 0.61 for a conducting lateral wall. The occurrence of 

an antisymmetric dynamic state is in agreement with the 

experimental observations of Ostroumov [7j and others 

[8, 93. The critical values of the Rayleigh number predicted 

in this case lie above those predicted originally by Hales 

[4] and subsequently extended by Verhoeven [3], Yih [5] 

and Catton and Edwards [6]: the disparity between the 

values presented herein and those of the latter authors 

decreases to zero as the aspect ratio approaches zero. This 

behavior is expected since, as established in Sec. 2, the 

results of Hale, Verhoeven, and Catton and Edwards 

represent sharp lower bounds for small values of the aspect 

ratio and an exact solution for the zero aspect ratio limit. 
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FIG. 1. Stability curves for aspect ratios less than unity. 
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The dependence of Rayleigh number on aspect ratio is 

displayed in Figs. 2 and 3 for aspect ratios greater than 

unity. There are three features worthy of comment. First, 

the convergence of the curves representing various n-states 

at large aspect ratios is to be expected if the characteristic 

cellular array of an infinite layer [lo] is to be approximated 

by representations (2) and (3). Moreover, the validity of this 

behavior has previously been proven by Sani [ 111. Second, 

the critical value of the Rayleigh number as obtained from 

either Fig. 2 or Fig. 3 by selecting the smallest value of Ra 
at each value of y is within 10 per cent of the limiting infinite 

layer value of 1708 for aspect ratios greater than approxi- 

mately 2. That is, when the radius is greater than twice the 

depth of the fluid layer the viscous dissipation at the lateral 
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FIG. 2. Stability curves for insulating lateral wall and aspect 
ratios greater than unity. 

wall plays a minor role in determining the energy require- 
ments of the system. Third, nonaxisymmetric critical states 
are possible at least for various “patches” of aspect ratios 

when the aspect ratio is larger than approximately 2.8 in 

the case of an insulated lateral wall. These patches cover a 

2100 

2000 

P 

1900 

I600 

I I I I I 

I 2 3 4 5 6 

7 

FIG. 3. Stability curves for conducting lateral wall and aspect 
ratios greater than unity. 

neighborhood of the aspect ratio at which the number of 

radial cells changes in the axisymmetric case. As the number 

of possible n-states is increased more of these transition 

regions are effected. The same phenomenon may, or may 

not, occur in the case of a conducting lateral wall. The mono- 

tone decreasing nature of the stability curves (Fig. 3) may 

surpress the occurrence of these patches altogether or at 

least cause them to appear at larger aspect ratios. (The 
monotonicity can be established directly from the varia- 

tional formulation and hence is not a ramification of any 
numerical procedures.) Preliminary numerical calculations 

suggest a complete suppression up to reasonably large aspect 

ratios but a dilinitive answer probably cannot be based on 

numerical calculations due to the required accuracy. Thus, 

axisymmetric flow states, although observable at large 
aspect ratio [12-141, are a completely dominent structure, 

independent of the thermal condition imposed at the lateral 
wall, only in a narrow band of aspect ratios about unity. 

The resdts presented herein coupled with those presented 

in [1] complete the linear stability analysis of the system as 
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well as lead to some insight in interpreting some of the seem- 

ingly contradictory experiments reported in the literature. 

For example. Chen and Whitehead [ 151 induced stable 

straight rolls in a cylindrical container at slightly supercriti- 

cal Rayleigh numbers while Koschmieder [ 1 l-131 observes 

axisymmetric rolls and Somerscales and Dougherty [ 161 

first detect a hexagonal regime. All these experiments were 

performed at aspect ratios near, or greater than, ten. In 

order to reconcile these observations one must first recall 

that all the Rayleigh number versus aspect ratio curves for 

all n-states corresponding to a dynamic state with one cell 

in the vertical converge to 1708 as y approached infinity. For 

example, as shown in [l] for the axisymmetric case (n = 0) 

the first three Rayleigh number values are already close at 

;I = 10. Moreover, the separation between these Rayleigh 

numbers is entirely due to the influence of the lateral wall 

whose effect decreases with increasing aspect ratio until 

the degenerate case of an infinite layer is reached where 

second order effects determine the cellular form. In addition 

according to the analysis the development of axisymmetric 

marginal flow states is dependent on adequate control of 

the thermal condition imposed at the lateral wall. That is. 

the manifestation of the so-called “wall effect” is not only 

dependent on the size of the fluid layer but also on the 

thermal state of the lateral wall. Consequently. at large 
aspect ratios the control of the experiment as well as the 

magnitude of secondary effects such as the temperature 

dependence of various physical parameters can play equal 

roles. Since various authors may use different fluids and 

control their experiments to varying degrees, it is not 

surprising that at large aspect ratios a myriad of cellular 

forms appear to have been observed. The analytical descrip- 
tion of such cellular forms has recently been dealt with by 

Newell and Whitehead [ 171 and Segel [ 181 for infinite 

aspect ratios and “large” aspect ratios. respectively. The 

subtleties introduced by the small energy gap between 

dynamic states are exemplified in Segel’s results which 

lead to a very good approximation to the critical Rayleigh 

number but predict a 2-O velocity held which, while being 

a good approximation, is not a possible solution of the 

linear stability problem [ 19,201. 

In closing it is noteworthy that in all cases the theory 

predicts a marginally stable dynamic state with one cell in 

the vertical. The latter is in agreement with all experimental 

observations known to the authors. 
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